АDDITIONAL TRAINING OF NEURO-FUZZY DIAGNOSTIC MODELS

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Neuro-Fuzzy Inverse Forward Models

Internal cognitive models are useful methods for the implementation of motor control [1]. The approach can be applied more generally to any intelligent adaptive control problem where the dynamics of the system (plant) is unknown and/or changing. In particular, paired inverse-forward models have been shown successfully to control complex motor tasks using robotic manipulators [1]. One way this i...

متن کامل

Choosing Appropriate Neuro{Fuzzy Models

To use fuzzy controllers for automization tasks appropriate fuzzy sets and fuzzy rules have to be deened. This can be diicult in some domains, and the resulting controller has to be tuned. Neuro{fuzzy models can help in this tuning process by adapting fuzzy sets and creating fuzzy rules. Combinations of neural networks and fuzzy controllers are suitable if there is only partial knowledge in the...

متن کامل

Hierarchical neuro-fuzzy quadtree models

Hybrid neuro-fuzzy systems have been in evidence during the past few years, due to its attractive combination of the learning capacity of arti2cial neural networks with the interpretability of the fuzzy systems. This article proposes a new hybrid neuro-fuzzy model, named hierarchical neuro-fuzzy quadtree (HNFQ), which is based on a recursive partitioning method of the input space named quadtree...

متن کامل

Training Algorithm for Neuro-fuzzy-ga Systems

The main goal of this paper is to present a new learning algorithm which has been applied to feedforward neural networks. It was used not only during the learning phase of the network, but also to optimise the number of hidden neurons. This learning algorithm is inspired on the classical backpropagation algorithm but it owns some variations due to kind of network used. This algorithm was applie...

متن کامل

Fuzzy and Neuro-fuzzy Computing Models for Electric Load Forecasting

Two new computing models, namely a fuzzy expert system and a hybrid neural network-fuzzy expert system for time series forecasting of electric load, are presented in this paper. The fuzzy-logic-based expert system utilizes the historical relationship between load and dry-bulb temperature, and predicts electric loads fairly accurately, 1-24 h ahead. In the case of the hybrid neural network-fuzzy...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Radio Electronics, Computer Science, Control

سال: 2018

ISSN: 2313-688X,1607-3274

DOI: 10.15588/1607-3274-2018-3-12